Convex Optimization for Binary Classifier Aggregation in Multiclass Problems
نویسندگان
چکیده
Multiclass problems are often decomposed into multiple binary problems that are solved by individual binary classifiers whose results are integrated into a final answer. Various methods, including all-pairs (APs), one-versus-all (OVA), and error correcting output code (ECOC), have been studied, to decompose multiclass problems into binary problems. However, little study has been made to optimally aggregate binary problems to determine a final answer to the multiclass problem. In this paper we present a convex optimization method for an optimal aggregation of binary classifiers to estimate class membership probabilities in multiclass problems. We model the class membership probability as a softmax function which takes a conic combination of discrepancies induced by individual binary classifiers, as an input. With this model, we formulate the regularized maximum likelihood estimation as a convex optimization problem, which is solved by the primal-dual interior point method. Connections of our method to large margin classifiers are presented, showing that the large margin formulation can be considered as a limiting case of our convex formulation. Numerical experiments on synthetic and real-world data sets demonstrate that our method outperforms existing aggregation methods as well as direct methods, in terms of the classification accuracy and the quality of class membership probability estimates. aAppeared in Proceedings of the 2014 SIAM International Conference on Data Mining (SDM 2014). 2 S. Park et al. CONTENTS
منابع مشابه
Hierarchical Classification via Orthogonal Transfer
We consider multiclass classification problems where the set of labels are organized hierarchically as a category tree. We associate each node in the tree with a classifier and classify the examples recursively from the root to the leaves. We propose a hierarchical Support Vector Machine (SVM) that encourages the classifier at each node to be different from the classifiers at its ancestors. Mor...
متن کاملA comparison of methods for multiclass support vector machines
Support vector machines (SVMs) were originally designed for binary classification. How to effectively extend it for multiclass classification is still an ongoing research issue. Several methods have been proposed where typically we construct a multiclass classifier by combining several binary classifiers. Some authors also proposed methods that consider all classes at once. As it is computation...
متن کاملRecursive Ant Colony Based ECOC: An Ensemble Learning Technique for Classifying Data
Error correcting output code (ECOC) is one of the widely used classifier ensemble technique .That technique provide solution for the various multiclass classification problem by dividing multiclass problem into binary class classification problem. In this paper, a new enhanced heuristic coding method, based on ECOC, RACS-ECOC is proposed. To generate strong classifiers for the multiclass classi...
متن کاملOptimal Binary Classifier Aggregation for General Losses
We address the problem of aggregating an ensemble of predictors with known loss bounds in a semi-supervised binary classification setting, to minimize prediction loss incurred on the unlabeled data. We find the minimax optimal predictions for a very general class of loss functions including all convex and many non-convex losses, extending a recent analysis of the problem for misclassification e...
متن کاملMinimax Binary Classifier Aggregation with General Losses
We address the problem of aggregating an ensemble of predictors with known loss bounds in a semi-supervised binary classification setting, to minimize prediction loss incurred on the unlabeled data. We find the minimax optimal predictions for a very general class of loss functions including all convex and many non-convex losses, extending a recent analysis of the problem for misclassification e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014